Escrito por Fco. Javier Manzano Mozo, martes 8 de mayo de 2012 , 22:48 hs , en Matemáticas
Calculus Rhapsody Finite Simple Group (of Order Two)

 Is this x defined?
Is f continuous?
How do you find out?
You can use the limit process.

Approach from both sides,
The left and the right and meet.
Im a just a limit, defined analytically

Functions continuous,
Theres no holes,
No sharp points,
Or asymptotes.

Any way this graph goes
It is differentiable for me for me.

All year, in Calculus
Weve learned so many things
About which we are going to sing

We can find derivatives
And integrals
And the area enclosed between two curves.

Y prime oooh
Is the derivative of y
Y equals x to the n, dy/dx
Equals n times x
To the n-1.

Other applications
Of derivatives apply
If y is divided or multiplied
You use the quotient
And product rules

And dont you forget
To do the dance

Also oooh (dont forget the chain rule)
Before you are done,
You gotta remember to multiply by the chain

(Instrumental solo)

I need to find the area under a curve
Integrate! Integrate! You can use the integration

Raise exponent by one multiply the reciprocal
Plus a constant
Plus a constant
Add a constant
Add a constant
Add a constant labeled C
(Labeled C-ee-ee-ee-ee)

Im just a constant
Nobody loves me.
Hes just a constant
Might as well just call it C
Never forget to add the constant C

Can you find the area between f and g
In-te-grate f and then integrate g
(then subtract)
To revolve around the y-axis
outer radius squared minus inner radius squared
multiplied by pi

Multiply the integral by pi!

Pi tastes real good with whipped cream!

Mama-Mia, Mama-Mia
Mama-Mia let me go.
Pre-calculus did not help me to prepare for Calculus, for Calculus, help me!

So you think you can find out the limit of y?
So you think youll find zero and have it defined
Oh baby cant define that point baby
Its undefined
Goes to positive and negative infinity

Oooh. Oooh yeah, oooh yeah.
Anyone can see
Any mere equation
It is differentiable for me.

(Any way this graph goes)

The path of love is never smooth
But mine’s continuous for you
You’re the upper bound in the chains of my heart
You’re my Axiom of Choice, you know it’s true

But lately our relation’s not so well-defined
And I just can’t function without you
I’ll prove my proposition and I’m sure you’ll find
We’re a finite simple group of order two

I’m losing my identity
I’m getting tensor every day
And without loss of generality
I will assume that you feel the same way

Since every time I see you, you just quotient out
The faithful image that I map into
But when we’re one-to-one you’ll see what I’m about
‘Cause we’re a finite simple group of order two

Our equivalence was stable,
A principal love bundle sitting deep inside
But then you drove a wedge between our two-forms
Now everything is so complexified

When we first met, we simply connected
My heart was open but too dense
Our system was already directed
To have a finite limit, in some sense

I’m living in the kernel of a rank-one map
From my domain, its image looks so blue,
‘Cause all I see are zeroes, it’s a cruel trap
But we’re a finite simple group of order two

I’m not the smoothest operator in my class,
But we’re a mirror pair, me and you,
So let’s apply forgetful functors to the past
And be a finite simple group, a finite simple group,
Let’s be a finite simple group of order two
(Oughter: "Why not three?")

I’ve proved my proposition now, as you can see,
So let’s both be associative and free
And by corollary, this shows you and I to be
Purely inseparable. Q. E. D.


¿Conocéis más?

Agregar comentario
  • Fco. Javier Magdaleno Fuentetaja el miércoles 9 de mayo de 2012, 22:49 hs
    Muy buena idea. Creatividad aplicada al aprendizaje.... y aprendemos inglés. La de Queen es buenísima.
  • Rosa el miércoles 24 de abril de 2013, 10:11 hs

    Matemáticas e Inglés. Buena combinación.

abril 2020
Los más comentados
Cantidad de posts: 1426
Cantidad de comentarios: 236
Nube de etiquetas
Últimos comentarios